Tentamen: Introduction to Plasma Physics
June 30, 2008
14.00-17.00 h, Room 5114.0004

Please write clearly your name on each sheet, and on the first sheet also your student number,
date of birth, and address. You can use either Dutch or English according to your taste.

PROBLEM 1 (25 points)

A Penning trap is used to trap low-energy electrons or ions and consists of a quadrupolar
electric field for axial confinement and a uniform magnetic field for radial confinement. The
electric field is produced with a ring electrode and two endcap electrodes and is defined via
an electrostatic potential function ®(z,y, z) given by
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The two endcap electrodes are negatively biased with respect to the ring electrode when
electrons are being trapped and positively biased when trapping ions. The magnetic field is
uniform and directed along the z-axis, i.e. B = Bpe,. A schematic drawing of a Penning trap
is shown below.

Figure 1: A Penning trap.

a. Discus qualitatively the single-particle motion of an electron in a Penning trap using
the guiding-center approximation. Draw schematically the electron’s trajectory. You
may assume that the magnetic force is much stronger than the electric force.

b. Assume that an electron oscillates along the trap axis. Write down the equation of
motion and derive a formula for the axial angular frequency w..



Calculate the E x B drift velocity v and show that this drift leads to a slow rotation
of the electron’s guiding-center around the trap axis, the so-called magnetron motion.
Calculate the angular frequency w_ of the magnetron motion.

Write down the three Cartesian components of Newton’s equation of motion of the
electron moving in the electrostatic and magnetostatic fields of a Penning trap.

To solve for the radial motion derive a differential equation for the variable u = z +
iy. Determine the two radial frequencies by inserting u = uge ™" in this differential
equation and solving the resulting quadratic equation.

PROBLEM 2 (15 points)

a.

True or False Debye shielding makes plasmas quasi-neutral on scale lengths much less
than the Debye length. Motivate your answer.

True or False The parameter A = n)$},, with Ap the Debye length and n the density, is
a large number in a well defined plasma. Motivate your answer.

Show that any distribution function f(r,v,t) = F(H) with H = mv2/2+ ¢® solves the
steady state (8/0t = 0) collisionless Boltzmann equation.

PROBLEM 3 (20 points)

The effect of collisions can be included in the dispersion relation for waves in a cold plasma
by adding a drag force vymyv, to the momentum balance equation, with vy the collision
frequency and mg the mass of the particle of type s:
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Show that the effect of collisions can be obtained by making the substitution
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in the collisionless dispersion relation.

For transverse waves in a cold plasma, show that if v, « w and wp < w (the high
frequency approximation) the real and imaginary parts of the wave number are approx-

imately \
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Find the dispersion relation for the longitudinal electron plasma oscillations including
collisions. Briefly discuss the damping of these waves, i.e. what is the damping decre-
ment and how does it depend on v,.



PROBLEM 4 (30 points)

A non-uniform plasma with equilibrium density po(y) o« exp(y/s) is supported against the
gravitational field g = —ge, by a magnetic field B(y) = Bg(y)e,. Consider an interchange
mode with a wave-like perturbation propagating in the z-direction as shown in figure 2(a).
The plasma is bounded by conducting walls at y = 0 and y = h as shown in figure 2(b).
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Figure 2: (a) A wave-like perturbation of a plasma that is supported against gravity by a
magnetic field with straight field lines. The gravitational field g is in the —y direction, the
magnetic field B in the +2 direction and the perturbation propagates in the +x direction. (b)
The profile of the plasma mass density po(y) between conducting walls at y = 0 and y = h.

a. Sketch in figures similar to figure 2(a) the direction of the electric fields generated by
the drifting ions and electrons for both s > 0 and s < 0. Show also the direction of the
resulting EE x B drifts and indicate for both cases whether the interchange modes are
stable or not.

b. Write down the ideal MHD momentum balance equation and show that the condition
for magnetostatic equilibrium is given by dBg/dy < 0.

¢.  We will perform a linear stability analysis of the interchange instability. Show that from
the first-order momentum equation it follows that
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d. Derive from this equation an ordinary first-order differential equation in y relating u,(y)
and uy(y). (From now on the subscript 1 in u will be suppressed.)

e. Use the incompressibility condition to express ug(y) in terms of uy(y) and the linearized
continuity equation to express pi(y) in terms of po(y) and uy(y). Substitute these
expressions into equation (3) and show that the following eigenvalue equation for u(y)

is obtained: L d d
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Please turn the page for questions f) and g).
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f.

Look for solutions of equation (4) of the form u,(y) = u(y)e~¥/2°. Derive a second-order
differential equation for u(y) and solve this equation subject to the boundary conditions
u(0) = u(h) =0.

Show that the eigenfrequencies wy, of the interchange modes are given by

2_ 9 4k2h? 52 3
“n = s h2 + 452(k2h? + n27?) n=12... (5)

For which values of the scale parameter s are the interchange modes stable 7



